Entradas

Gráficas

Imagen
Histogramas, Polígonos de Frecuencia y Ojivas En el Post anterior hablamos de Tablas de Frecuencia. Estás tablas, o los valores contenidos en las mismas, también pueden ser representadas en diferentes tipos de gráficos. Un Histograma es la representación gráfica de una tabla de frecuencias. El histograma puede ser: de frecuencias absolutas, de frecuencias relativas, de frecuencias absolutas acumuladas y de frecuencias relativas acumuladas. Más profundamente, el histograma de frecuencias es una representación visual de los datos en donde se evidencian fundamentalmente tres características: forma, acumulación o tendencia posicional y dispersión o variabilidad. Un Polígono de Frecuencia es el nombre que recibe una clase de gráfico que se crea a partir de un histograma de frecuencia. Los histogramas emplean columnas verticales para reflejar las frecuencias, los polígonos de frecuencia se forman uniendo los puntos más altos de cada una de las columnas del Histog

DATOS AGRUPADOS

Distribución de Frecuencia Para Datos Agrupados en Intervalos de clase Cuando existe un gran número de datos, por lo general más de 40, y los valores extremos de una serie se encuentran muy distanciados entre sí, en vez de colocarlos uno a uno con su respectiva frecuencia en la distribución, es conveniente agruparlos en los llamados intervalos de clase. Los intervalos de clase permiten simplificar el manejo de los datos, sin embargo, los resultados se tornan menos precisos, que trabajando con datos directos. El error producto de la agrupación de intervalos de clase, disminuye a medida en que el número de datos que cubra cada intervalo sea menor. Se recomienda construir entre un mínimo de 5 y un máximo de 18 intervalos de clase. Deben tener el mismo ancho. Punto Medio o Marca de Clase de un intervalo de Clase; es el punto medio del intervalo (valor que está situado a igual distancia de los extremos del intervalo). Para calcular el punto medio de un intervalo de clase, se utiliza la

Datos no agrupados

Imagen
TABLA DE DISTRIBUCIÓN DE FRECUENCIA MEDIDAS DE TENDENCIA CENTRAL  MODA  La medida modal nos indica el valor que más veces se repite dentro de los datos; es decir, si tenemos la serie ordenada (2, 2, 5 y 7), el valor que más veces se repite es el número 2 quien seria la moda de los datos. Es posible que en algunas ocasiones se presente dos valores con la mayor frecuencia, lo cual se denomina Bimodal o en otros casos más de dos valores, lo que se conoce como multimodal. MEDIANA  Con esta medida podemos identificar el valor que se encuentra en el centro de los datos, es decir, nos permite conocer el valor que se encuentra exactamente en la mitad del conjunto de datos después que las observaciones se han ubicado en serie ordenada.  MEDIA  Es la medida de posición central más utilizada, la más conocida y la más sencilla de calcular, debido principalmente a que sus ecuaciones se prestan para el manejo algebraico, lo cual la hace de gran utilidad. Su p

DATOS Y VARIABLES

Imagen
Datos estadísticos (Variables). Los datos son agrupaciones de cualquier número de observaciones relacionadas. Para que se considere un dato estadístico debe tener 2 características:  A) Que sean comparables entre sí.  B) Que tengan alguna relación. Variable. Una característica que asume valores. Clases de datos Variable cuantitativa o escalar :Será una variable cuando pueda asumir sus resultados en medidas numéricas. Variable cuantitativa discreta :Es aquella que puede asumir sólo ciertos valores, números enteros. Ejemplo: El número de estudiantes (1,2,3,4) Variable cuantitativa continua :Es aquella que teóricamente puede tomar cualquier valor en una escala de medidas, ya sea entero o fraccionario. Ejemplo, Estatura: 1.90 m Variables cualitativas nominales : Cuando no es posible hacer medidas numéricas, son susceptibles de clasificación. Ejemplo: Color de autos: rojo, verde, azul.

Universo,Población - Muestra y Muestreo

Imagen
Universo  Es la determinación del conjunto de unidades de observaciones que van a ser investigadas. En general, el universo es la totalidad de elementos o características que conforman el ámbito de un estudio o investigación. Es un todo. Ejemplo Si queremos realizar una investigación en la ciudad de Quito sobre los factores que influyen en el bajo rendimiento académico, tomaríamos como universo a todos los estudiantes de la universidades de la capital. https://prezi.com/htm1xuedvx1g/universo-poblacion-y-muestra/ Población Es un conjunto de personas, animales o cosas que presentan características comunes, sobre los cuales se quiere efectuar un estudio determinado. Se define como la totalidad de los valores posibles (mediciones o conteos) de una característica particular de un grupo específico de sujetos u objetos que se desean estudiar en un momento determinado. Características de la muestra: * Reúne las características principales de la población, en relación con la variable

Mundo Estadísticas

Imagen
La estadística es comúnmente considerada como una colección de hechos numéricos expresados en términos de una relación sumisa, y que han sido recopilados a partir de otros datos numéricos. la estadística es un valor resumido, calculado, como base en una muestra de observaciones que generalmente, aunque no por necesidad, se considera como una estimación de parámetro de determinada población; es decir, una función de valores de muestra. (Kendall y Buckland (citados por Gini V. Glas / Julián C. Stanley, 1980) Murria R. Spiegel, (1991) dice: "La estadística estudia los métodos científicos para recoger, organizar, resumir y analizar datos, así como para sacar conclusiones válidas y tomar decisiones razonables basadas en tal análisis. Importancia Las estadísticas, los especialistas en esta área han señalado las razones que convierten a esta disciplina científica en una de las más importantes de la actualidad, siendo de esta forma una de las principales herramientas de